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ABSTRACT

Two conditionally heteroscedastic autoregressions are
considered. It is shown that under suitable conditions, the
processes are stationary and ergodic, and that the stationary
initial distribution can be represented by a nonlinear function
of independent, identically distributed standard Normal random

variables.
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1. Introduction

Autoregressive moving average (ARliA) models are rou-
tinely uéed in time series analysis, particularly since
tr.z -ublication of Box and Jenkins' ( 1 ) book which set
Z:-* methods for the identification, estimation and

iing uvf these models. There 1is, however,

one which 13z =zlequately represented by a linear model.
Despite this, the linearity assumption is seldom questioned.
The lack of useful, nonlinear alternatives to the ARMA model,
with the exception of Granger and Andersen's ( 5 ) bilinear
ARNMA (BARMA) model, left few options. Recently, however,
Engle ( 4 ) introduced a new class of nonlinear models.
Engle ( 4 ) c¢bserved that, given the past, the conditional
variance of a stcchastic process is not necessarily constant
but can, in gsnsral, depend on past observations. Accord-
ingly, noriirzar, conditionally heteroscedastic time series

modelis car te derived from the classical models. Although

Trzgle orl- 7. Zi2d one specific formulation, conditional
hzteroscslizztiziity is a general property and can be used to
defire a <zrizz of nonlinear models.

in Tnlz tapar two conditionally heteroscedastic auto-

regrzczicrnz are considered. Properties of the models are
gtuiled and simulated sample paths are presented. It is
shown that under simple conditions the processes are station-

ary and ergcdic, and that the stationary initial distribution
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can be expressed in terms of independent, identically distri-

buted (f.i.d.) standard Normal (N(0,1)) random variables.

Z JTonditionally Heteroscedastic Autoregressions

R 5'”5 P P ¢pyt—p + ét be a p-th order, zero
cression and let }t = U(yt.yt_l,...) be the sigma
z-zrz7ed by the yi's up to time t. In the classi-

cal model it is assumed that {et} is an i.i.d. sequence of

N(O,af) random variables, where q§70. Consequently, given
Ji_q, the conditional mean of y; is linear in Yg-11+ -1 ¥t-p
and the conditional variance is constant. Now, consider as

an alternative model one where the conditional variance de-
pends on the past observations. The result is the condi-

tionally heteroscedastic autoregressive (CHAR) model.:

y¢ = ¢1yt_1 +,..+ (ppyt-—p + Gt (2.1a)
where ths Z-:z<ribution of €4 conditioned on }t—l' is given
by
€.l¥._, ~ no,n,_y) (2.1b)
with hy =0y _1/V¢-2r -+ ¥t_riB) for some finite r3i.

The function h(:) is a positive function of NSRS FUIPTI
vi-p 2nd O is vector of parameters.

The CHAR model is obviously nonlinear, even though the
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conditional mean is linear in yt—l'yt-z""’yt—p' In con-

trast, the nonlinearity of a BARMA model is the result of a

ncr->inear conditional mean. Engle ( 4 ) defined a general,
o--:itionally reteroscedastic regression model in which the
regres-:.C call inciude exogenous as well as laggcd variables.

- N
- - P ERR
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- -

n:=z=ion used here is Engle's and some of the

(Y

properties wni:zn hold for the autoregression also hold for the
more general raogression model (see Engle (&) ).

The CHAR process defined by (2.1a,b) is a Markov process
where the order depends on ht—l but is always at least p.

For a given h it will be necessary to check whether or not

t-1
the process is stationary. In any case, it is easy to see
that E(€t)=0, for all t, and Cov(és,et)=0, for sf£t, since
the conditional mean of et is zero. The et's are uncor-
related zal*rcuzh they obviously not independent. Thus, if
the {yt} pracess is stationary and has a finite variance,
the zutocorreiation function is the same as in the casz of
i.1.8, €_'z 1.=z., the autocorrelation at lag j'.fj' is

v

given by

2. - A = J J
S wrr(yt.yt_j) MGyt .+ AGY (2.2)

-1 -1
1,.-0,G

of the characteristic polynomial @(z)=1-¢ﬁz—...—d§zp with

where A,,...,A re constants and G are the roots
1 jo)

,Gi’<1, i=1,2,...,p. Furthermore, the unconditional vari-

'\J-\*",-\ - - ¥ . ™, B KRGS A SRS P R e T T T T T O T T e e
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ance, Gy._ls given by
62 = Bh,_)/(1-0,0,-...-Op.)
y - Bl g 1017 Ppfp 2.5

if E(hy_q)%e0.

There are numerous choices for the conditicral variance
hy_4- However, not all choices lead to usslul mcdels. it
is desirable to choose h;_ 4 SO that the model is flexible
enough to give a good approximation to a variety of processes
while remaining mathematically tractable. In this paper,
hy_, ls assumed to be of the form hy (=%t % €5+, .+t 62
or ht—lzp0+ﬂ1(¢1yt—1+'"+¢byt—p)2- The corresponding models
will be referred to as CHARI and CHARII, respectively. The
CHARI model is a special case of Engle's ( 4 ) conditionally
heteroscedastic regression model and the CHARII model is the
time series analog of the regression model in which the vari-

ance depends on the mean (see Carroll and Ruppert (3) , for

example). The properties of the CHARI and CHARII models

[T

are described in Sections 3 and 4. Proofs 27 <ha twzs --

rems, which give sufficient conditions for the statlicrz:_--

and ergodicily of the processes, are previied ii Seciic.. .
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3. The CHARI Model
The CHARI(p,k) model has the following representation:

Z2I(pok): vy o= ¢1yt_1 ...t ¢$yt-p t ey (3.1a)

(. + ot € Z (3.1b)
for some fixed, rinite k>0 and {2z} ~ i.i.d. N(0,1).

The parameters uo’il""'“k are nonnegative with do stric vy
positive. Engle ( &4 ) referred to the (ét} process, ¢
fined by (3.1b), as an "autoregressive—conditional-hetéro—
scedastic" (ARCH) process. In that case the word "autore-
gressive" refers to the conditional variance structure and
should not be confused with the autoregression in (3.1a) or
the gener. CHAR process given by (2.1).

A CHARI(p,k) process is a nonlinear (p+k)-th order
liarkov proc=ss, Typical simulated sample paths are pre-~
sznted in Tizure 1. These illustrate the "patchiness"”
wnich is chzrzcteristic of the CHARI process.

Conditions under which the process is stationary and
erzodic have yst to be determined. It is obvious, however,
that the roots of the characteristic polynomial ®(z) must
zie outside the unit circle since this is required for the

the special case where ¢1=a2=...=dk=0, which corresponds to

the usual autoregression, In the general model it will
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also be necessary to impose restrictions on xl,az,....dk to
ensure the stationarity of {€t}. The appropriate condition
222z when the roots of the characteristic polynomial

Qq:‘=1—alz—...-dkzk lie outside the unit circle. Combining

+r2 wwn conditions gives the following theorem, A proof is

Theorem 3.1: (Stationarity and Ergodicity of the CHARI(p,k)

Process) - Let {ytzi be a CHARI(p,k) process with %420 and
xizo. i=1,2,...,k. Assume that all the roots of both Q(z)
and ¥(z) lie outside the unit circle and, Yor¥ye--+0¥poq
and €,,€,,...,€, _4 have finite variances. Then {yé is

asymptotically stationary and ergodic.

Under the conditions of Theorem 3.1, there is a unique
stationary initial distfibution. The corresponding station-
ary, joint density function for (yt—p—k+1'yt—p—k+2"°--yt)T
is the nor*rivizl solution, f(yt—p—k+1""'yt)' of the inte-

grzl equailicn:
ﬁ?i 0
i 2 2 q-%
E'. f(‘_ cem-k+1? v.f.t) = f [21.{( 0(.O+0(-1rt_1+. . 'kar_t_k)]
L —e0
-®
L 2 2 2
LA vy —l‘-'Y‘
o X exn] S/ (ot T gt '+°‘krt-—k)] f(Vg pokr o ¥go1) W gy
o (3.2)
o where r, = yt—¢ﬁyt_1 ¢pyt p The marginal distribution
T
b5
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e
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t of y4+, obtained by integration, can also be expressed as the
iﬁ distribution of a nonlinear function of i.i.d. N(0,1) random
-:\. .
oy varilzbles (see equation (5.13) ir the proof of Theorem 3.1).
N

£2<-ough the distribution of Vi is symmetric about zero, it
- is obvis.siy non-Caussilan except when dlzazt...:xkzo.
ura*2ly, (3.2) appears to ve difficult to solve,
L gver. in trz sirplest case with p=k=1. It is, however, easy
to calculate the moments of Gt and Vi by using the condition-

g al Normality to evaluate a conditional expectation first.

Since the distribution of Yy is symmetric, all odd power

o
S moments exist and are zero. The unconditional variance of
Ei Gt can be found by solving the equation:

o 2 2 2 - 2

3’: o‘e = E(Et) = E(ht"l) = &O+°L1E(6t_1)+.-.+“kE:(e.t_k)o

\) Therefore,

o 2

i Of = oo/ (1-ey—. .. -ety) (3.3)

‘@ vhere o< znZ substituting into (2.3) gives the station-
L 1=l -

e ary, unconiiticral variance of y.:

.:. | 2

e ry o= %/l ) (A-dypy-omdp )] (3.4)

o

i p

- where D ¢.¢. £ 1.

;:._*.- 1= ifi

0. Higher order moments can be calculated in a similar
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fashion, although this involves increasingly more algebra.

In addition, the existence of higher order moments requires

intr2asingly more stringent restrictions on the parameters,

n

» ~hat the only case where 211 moments are finite is the

Gaussian {X,=&.=...-x,=0) cacse. For example, when p=k=1,
1 "z k

U
tS

.- NP .
- Z0oand (ZL) zive

0’(,2 = oco/(1-oc1)
2 2
oy = xo/[(1-2))(1-¢7)]

which are both finite and positive if &3>0, 04%,41 andl¢l <1.

These are just the conditions for stationarity. However,

Bley) = 5[E(e ¥, )] = 38 [(xgrayed )71,

Therefore,

I

[L1Y
(‘l

il

32 (1+ay)/ [(1-2,) (1-365)]

O

1
which is finite and positive only if OL0343 =,

» " ‘! -
X
O )
s
5!

[)
’
[3
FAPL

.
e

In genersl, when p=k=1, the necessary and sufficient

condition for the existence of E(eiJ) is

', I'll)
@\
A

]
3 «iTl(2i-1) ¢ 1,  j=1,2,... (3.5)
i=)

PR Y |
Iﬁﬁﬁ, [

-F‘.I.'-’ L

L7
)
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T
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= ?

‘;K (Theorem 1; Engle (&) ). Since E(yij‘)> E(eij). (3.5) is
%:25 : necessary for the existence cf E(yij). As j increases dl
.;?E r..z< decrease and in the limit, xl;o is the only case where
C;: a’_ moments of Y and et exist. Therefore, the density

ﬁie functions for ;. 2nd €, generally have heavier tails the

j}; crmz2l distribution. Bounds for the tails can be obtained by
{i” fzzerzininz Thz highest value of j for which E(yij) or E(eij)
:}E is finite.

Ez? The CHARI model is an intuitively reasonable way of

;:5 modelling conditional heteroscedasticity in an autoregression.
;;3 Moreover, simulated sample paths, at least superficially,

?%i résemblé certain time series in their patchy appearance.

{~1 There are, however, other equally plausible ways of modelling
jiaﬁ the conditional variance of an autoregression. One obvious
';%E alternative is to assume that the conditional variance de-
3;# pends direczly on the previous observations. In particular,
-;; the conditional variance may be directly related to the con-
;éi ditional mszn. The second CHAR model, to be discussed in
.;?: thz naext s=2ciisn, is one way of modelling such behaviour.

L. Txs CHARIT odel

é:- The CHARII(p) model can be represented as follows:

';;.;:{;'-f CHARII(P): g = @pyy g +o0o* dpvyp * €y (4.1a)
.;t

.
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where €4 =[BO + ﬂ1(¢1yt_1+...+-¢pyt_p) J‘ Z4 (4.1b)
ar.c {zt}'v i.i.d4. N(0,1). The parameters ﬁo and ﬁl are non-

nez_=ive with Bo strictly positive to ensure a positive con-
ditional —u:rizrze,

e
R VR

at
t

orccess is simply the time series analog of

i

terzs::z’.zstic regression model in which the variance

g
I

Tae .

[

is proportional to the square of the mean (see Carroll and
Ruppert (3) , for example). Like the CHARI process, the
CHARII process is a nonlinear Markov process with the same
linear conditional mean as the classical autoregression.
Unlike the CHARI(p,k) process, the CHARII(p) has the same
order, p, as the classical autoregression. Simulated sample
paths, for four stationary CHARII processes, are shown in
Figure 2.

Conditions which are sufficient for the stationarity

and ergodicit, of a CHARII(p) process are derived in Section

5 and are £=1=zd in Theorem 4.1. As before, it is obvious
that the rz:z7z »7 the characteristic polynomial ¢wz) must
lie outsidz <tz unit circle for the process to be stationary.

vizus 13 <he requirement that (1+ﬂ1)(¢1f1+"‘+4£9p)

be lzss than one, where fj’ j=1,2,...,p are given by (2.2).
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(;~ Theorem 4.1: (Stationarity and Ergodicity of the CHARII(p)
3ﬁ Process) - Let {y £1>be a CHARII(p) process with 6070 and
e ﬁla?. Assume that all the roots of @(z) lie outside the
i
e uni* zircle and yo,yl,...,yp_.1 have finite variances. Then
_ﬁ {yt} iz agymntotically stationary and ergodic if
?? (1+ﬂ1fx©1f1+...+dgfp)41 where P, is given by (2.2).
L
e There is a unique stationary initial distribution when
ij the conditions of Theorem 4.1 hold. The density function.,
- f(yt-p+1""'yt)' for the stationary initial distribution,’
o can be found by solving:
e 1
.- Y = 2,71~
{ £(Ygoperr ooV "/[217{“0" B (g ¥y )T ]
0 —e0
o _1,.2 ch | 2
o X exp[ {60 0y ¢y g+ Y4 _p) }J T(¥ypr e Yeog) Wy
(4.2)
J
Y e - A, _ - 3 « 3 -
= wWhaTe Ty o= ¥im S o 4byt—p’ The corresponding station
§ ary, marginzl Zistribution of y; can be represented in terms
;' ¢Z = ronlinzzr Tunction of i.i.d. N(0,1) random variables
- (sze Equaticn {5.23) in the next section).
The integral equation (4.2) is just as difficult to
solve as (3.2) However, moments can be calculated by in-
2 vokirg the conditional Normality. For example, the variance,
Yo w
NN 05. of a staticnary CHARII(p) process can be evaluated by
= substituting
<
"
t

L Ll

LS T L ‘A?;.':h\J\.I\..~:’ .\-ﬁ};:*}} ‘}'-A\J




12

E(hy_,) = B+ B E[( ¢1yt—1"---+¢yt_p)21
Bo o1 Gfy +e- +dy0 0L

ir=: (2.3) and solving for 0*32, to give
oZ = B/ [1-(1+5) (G P+ .+ @ p )] (4.3)

where (1+ﬂ1)(¢1f1+...+¢$fphcl.

In general, the marginal distribution of Yy is sym-
metric, but not Gaussian, with heavier tails than Gaussian.
All odd moments are zero, by symmetry, and E(yij) exists and
is finite for a finite number of j, unless ﬁ1=0 where all
moments exist. The maximum value of j for which E(yij) is
finite can be used to bound the tails of the distribution of
V- On the other hand, if E(y%j) is finite, for a given j,
then certain restrictions on the parameters are implied.

2
For example, when p=1, E(ytJ)4N>implies that

RS .
1 - (pz‘].Z(%i)ﬂ}(Zm—l)ﬁf'l > 0. (4.4)
1=1

me|

Ve oo
AU
bR .‘.’v‘\"»':'- o s
PSRN

Tz corresponding regions of the parameter space are shown
: in Figure 3, for j=1, which implies stationarity, and for
L
;:; j=2, which corresponds to a finite fourth moment given by
N
. By, ) = [3pE+60%802(1+8,)] / [1- §(1+68,+367)
“e— Jt - /50 ¢|’500'y /31 - 13-.31 (Lk.5)

AR AR
’\l L‘ ..- ‘..
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When j=2, condition (4.4) ensures that the denominator of
(4.35) is finite and positive,

Theorems 3.1 and 4.1 are proved in the next section.
T-: :roofs are important because they establish the conditions

under ...ic¢h the ChaRI and CHARII processes are stationary

céiz =n3, in doing so, characterize the stationary
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o

initial distrisution. Stationarity and ergodicity are fun-
damental prorerties. In practical applications, stationarity
is often impcsed by physical constraints on the process pro-
ducing the observations. In some cases, stationarity is
required if the model is to have a meaningful interpretation.
Furthermore, the assumption of stationarity and ergodicity

is central to statistical inference, including parameter
estimation. Theorems 3.1 and 4.1 are essential to the in-

vestigaticn and application of the CHARI and CHARII models.

5. Proofs 2f Theorems 3.1 and 4.1

Boir Thzzrems 3.1 and 4.1 are proved using the results
o Zreiman {2 which demonstrate that the stationarity
and ergodicity of a Markov process depend on the existence
ana unigueness of a stationary initial distribution. It
will be shown, by repeated application of the appropriate
defining equation, (3.1a,b) or (4.1a,b), that as t-2w», the

limiting distribution of Vi exists and is independent of

the initial conditions. This distribution is the unique
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t stationary initial distribution and the process which has it
'5 as its initial distribution is stationary and ergodic
(Tizorem 7.16, Breiman (.2)).  In this sense, the CHARI
=~ THARII prccesses are asymptotically stationary and ergo-

dic, I trne conditions of Theorem 3.1 or 4.i hold.

\ Proof of Trecresm 3.1

v Consicer the process {eé defined by (3.1b). Repeated

= application of (3.1b) gives:

b~ - € =(o +« 52 + + o 62)%2
" V0 k-1 °°- k0 k

SN k 1

. 2 2, 2 2 241
ek+1‘['“o*"‘z(“o”"lek-l‘“''-+"‘k"‘o)zk+°‘zek—1 AERTREL N RS
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Nj

.. * J
e _ _ 2 2 .
) e}:+j-[,§g)'m + Vj.lek—l +...+ vj,keO] Zk+j Jj=0,1,... (5.1)

vhere the -~z-i.m variables U and vj n are defined recursively
’

bv the fzll:wing relations:
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ar: Zor m=1,2,...,k

. r(5.3)

_ , 2 2
Vim = % Vieoq mZok-1 t %2Vk-2,mZ2k-2 trt Vo, m%k

_ 2 2 2
jom ~ alvj—l,mzk+j—1 * xZVj—Z,mZk+j-2 R “kvj-k,mzj
i>k

Equation (5.1), which can be verified by induction on j, ex-

presses € in terms of the initial values €,.€,...,6, 4

k+j
and the i.3.4. N(0,1) random variables Zk'zk+1""'zk+j'

for j=0,1,...

n’ j=1,2,...,k are

nornegatisz o 211 j and from (5.3) it follows that for

Note trnat the random variables vj
1 ]

o 4 -
1;.—.1.,2’ DR

s
]

= o E(v

"rl.m 1 Oom)

E(v. ) = dlE(Vj—l,m) + dZE(vj_

.
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where (5.4) holds for jyk and E(v'j m)' j=0,1,...,k-1, are ob-

viously finite. Equation (5.4) is a difference equation in
E‘Tiln)' for each m, and has the solution
Ty AR »d T ‘j
BV Bl,mrl +,. .0+ Ln'ka (5.5)
wner: B 3 are constants and F.1,F_1 p-1 are
TS T1,m’ T " Tk,m 1 ' 2 """k

the roots ¢ the characteristic polynomial

1{'(2) = 1-u1z—...—akzk.

which lie outside the unit circle by hypothesis. From

(5.5) the expected values, E(vj m). die out exponentially

o
with J and hence ZZOE(Vj m)Athor m=1,2,...,k. This implies
J: ?

that

£ K © K

jg rZ.;E(vj'mts}f_m) = jzzoé;E(vj’m)E(e}i_m)Lao (5.6)
girce the Vj,m‘ which depend on Zk'zk+1""'zj' are indepen-
dent of €5,€,,...,€ 4, and by hypothesis €orEqr-vn by
havz finite second moments.

Now consider the CHARI(p,k) process given by (3.1a,b).
A siandard argument for the p-th order autoregression can
be applied to (3.1a) (see Karlin and Taylor (6) , for ex-

ample). This gives

R T N I R R N T N R oY P I R L T
ORI, 1 g 0.7 Lo e € (Y R ORI AN |
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3
=T¢ e . + E.'lyp_l ot Ej'pyo j=0,1,... (5.7)

mso M P*j-m J
w3
B v, - S ) 3 3 .
N wh:=r2 the recurrence relations for Sj and gj,m are:
5, = 1
°0
(5.8)
BJ+1 = g'],l j:O,l,-
?’O.m = ¢m m=1,2, 'P
§j+1,m - gj,1¢rn ¥ gj,m+1 m=1,2,...,p-1 j=0,1,... (5.9)
gj.p ) gj.lq)p-
The coefficizrts can also be obtained from the power series
S expansion =7 f_l(z) where
[
N
SR @
o = 1- Z=e .- Zp.
b (2) = 1-Gz-..

AL

LA ul r‘rTv.—r‘r' vy
S
¢

i
m
Z5 a" + Rs(2) (5.10)

g é_l(z) =

where the remainder Rj(z) is

w e d
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j+1 P+ivz-1

R. = . J*L 4+ B zZ). .11

J(z) (‘53,1Z EJ'pZ )p " (z) (5.11)
Fur-rermore, if Gzl. . ...G;1 are the roots of §(z), which 1lie
cvo=z14e the unit circle by assumption, and lzlém.ianzlL then

- w 1
the ser_zx & ~z) = /, szm c.nverges abvsolutely. Hence
™20

R.(z)=2, zz =»=. for any |z|< m%nl(};ll, including z=1. This
«©
implies trzt g. -0 for m=1,2,...,p, as jo, and 2: $_ converges
bv,r.x ™med m
absolutely /sze Karlin and Taylor (6) for details).

Now, combining (5.1) and (5.7) gives

j pry-m-k
( - 1 2 '
E[Lyptj ;osm( iZ:o: ui)2 zp+j_m} ] (5.12)
2
- E[<§J 1yp 1 ° ;j.pyo) J+

3
$2 (T, - 2 2% _ —;—}2
r:[; S E[(__._. Vp+j-m—k,16k-1 +...4 Vp+j—m-k,keo) (Zi:ui) '
éE[(g.,‘f .+...+§. y)2]+
Jr 37—k J,p°0
] (2 = .. 2
Z”m E ';f_j-::-}:.lek-l Tooe? Vp+j-—m-k,k60)'

Tre Tirz* tzrm in the last expression vanishes, as j->% if

Ygr¥y ';"'p-l have finite variances, since gj'm->o. m=1,2,...,p.
The last term i3 the G+¥1)-st term of the Cauchy product of
Q
Z 2 2 ,
"Z:eém and iZ:OE(Vp+j—k.1el(—1+' . '+Vp+j—k.k60) and therefore must also

converge to zero since the Cauchy product converges, as a
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consequence of ZJS l<o ana (5.6). Hence, the expectation
mz0

(5.12) cenverges to zero as Jj¥=.

“ne preceding results imply that, as j-o=,

in guafrz=i: n.zan, where

d )
U = 1lim Z‘.:osm({:ul)zzmj—m’ (5.13)

jo™

The distribution of U is independent of the distribution of
YorYqre-r¥po1 and €O,C1,...,€k_1. Since the {y£} process
is obviously indecomposable, the limiting distribution,
given by (5.13), is the unique stationary initial distribu-
tion and the {yJ process is asymptotically stationary and

ergodic (Ereiman (2) ).

roof of Trz-raerm b4

Repzz=:I zubstitution of (4.1a,b) gives:
V, = Gy st bvo + [By + A(d +d y,)2]? =
p ~ Tivp-1 Tt 0 1'% Yp-1t - T
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Yp+1 © ¢1{¢1yp—1+"'+¢py0 * l:/3o"(31(4’13’1:-1’°'"’“‘1’135’0)2]E Zp}

* d>:23’p-1 V52 toaot d)pyl * [ﬂo+[51<¢1{¢’1¥p-1+"'

1.

Y i 3.t 213 2]
_;p‘)’ O+ L(JO‘F(Jl . ¢1yp_1+ co .f-@pyo) J* zpi +¢2yp_1+. . +¢py1> jz Zp+1
yp+j = Zé.n’.u'_.;_m + Ej'lyp_l I gj.pyO j=0,1,... (5.114_)

where the ccefficients sm’ m=0,1,... and ;j,m' m=1,2,...,p
are defined by the recurrence relations (5.8) and (5.9) of the
previous proof.

The random variables Wi m=0,1,..., are also defined

recursively. They are given by

‘ (5.15)

The wj's are uncorrelated and have mean zero. The
variance cf Wi,q can be found by squaring both sides of (5.15)

and tzking expectations to give
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2
B(wi,1) = Ao + BoE[(Ej g, 1poa* o +Ejuq, 1900 T

2 2 2., 2
§j+1E(wO) +.o. .+ 51E(Wj)

B u12 - 4 2 o D
v - B ..:\ = ﬂ.‘: G,E[(dplyp_1+. . .+¢pyo) ] . Therefor>,

3 J
2 2 .
-—: - {30E0nm +{312n d’ 3—0'1)"' (5'16)

o M- J-m

where 6? is defined to be

2 2 .
oy = E[(fj,lyp—1+"'+;j,py0).] j=0,1,...

and the nonnegative coefficients ﬂj are given by the recur-

rence relations

o _
(0'1

BL8IN g t0S) =12, (5.17)

0
Consiizr the power series LN _z", Equation (5.17) im-

T R, Ny e X
'i..‘.-".. .'. - ":' .,h.. .. T .

~ m:=0 m
2 plies that
. - o ,

s T n - m = . 18
:f:::‘ (‘m"i, nmz (1 + [51 {51 "é‘osmz ) 1. (5 )
SRS
~' N
ESAS
QN : f A m . . -3
i¢ Since sz is absolutely convergent whenever lz'ém;n,Gial,

. m=0 1
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where GTl, i=1,2,...,p are the roots of @(7) (see previous
proof), (5.18) implies that ET[ z™ is absolutely convergent
ir “émlan 2! and 1+(31 Bﬁs |z] ™7 0. In partlcular, for
T= ::Y] <o if 1+(31 (5]7:5 > 0. Note that 1+p1—{312§ >0 is
aquiveient *+~ (1*39;)(¢131 .. +¢f )2 1 since 2%
(1_¢1?1-"'_¢“Pp )"! where [FEREE y are given by (2.2).

It is zlzc easy to see that Z.o- First note that

mp
the coefficients gJ nr M=1,2,...,D, satlsfy:lz_:R (z) = fmé 2",
where the re.““lnder/\wa)s defined by (5.11), and i mé z™ is
absolutely convergent for l lém;.an I Thus, for z=1,
%‘},’(fj.l . )lzao which implies that 12300'3 Lo , provided

Yor¥qr--- 'yp—l have finite variances.

Let {X;S be the random variables defined by

>
o
1]
o
[@VH
N

. T 213 .

Xip1 7 Lfg * @1($j+1x0+...+81xj) J2 Zo+j+1 j=0,1,...

REznszating ihz a2rgument used to derive (5.16),
2 1
E(xT) = . : .
N A =7 - 2
Now, consider E[(y,, .Efm"a . From (5.14)
- 2 2

E[(yp+.] ,,,Z_E,Sm J m J E_osm E[(Wj_m - xj-m) ]. (5.20)

S L A R TR A
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£' The expectation of wjxj is nonnegative and

N -

\p

= Bui i) 2 Pt BE[{(B; ¥ q*ie 4 Es ot bywot. .+ Spws_1)7

o v 0" j,»1Vp- 1t jsp’0 1Wj-1

9,

,\\ij0+...+51xj_1).} , (5.21)

P - L. R S Y 2% 2%
- ine inequallT follows from the fact that (B,+3,a")%(B,+3,;b")
T 1

3 7 ‘30+ﬂ1(a2b2)2 for any real numbers a and b. Since

. 1

- e[(x?v?)%] - E(IxYl) » |E(XY)] for random variables X and Y,
o

] (5.21) implies that
=

:::5' 2 )
i E(wsx )Y Bo + Bal85EGugxg) . +83E(ws_pxs )]
This inequality and the fact that
o

E(wyx) = Bl BZ{B,+py (byy. 1+ .40y )22 2
_ WoXo!) = R BeTA1 P¥patte - PpY0 1 J/

:‘:f'.- .

N 3

can be uzzl T: verify that E(ijj) 7 ﬁozznln. Hence it follows
mzp
from (5.1%° =2 {5.,19) that

L]

. .. '.l."‘:“' v, "n ,. .‘l . \. .":
P AL AT R

E[(w]- - xj)z]é (512:.'7] 02

o m=0

R I
o S

Substituting into (5.20) and simplifying, using (5.17),
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3 3
2] 2
E . - : Z (148, )LM 6% . .22
[(yp+3 .mz;osmx:]'m) ( ﬁl)m:o“m J-m (5 )
Tr.z :;%ht-hand side of (5.22) converges to zero as jo=,
«©
S Z_YI. ard L 0’2 both converge and the right-hand side
m:0 N ™o
of (5..-. i ne (j+1)-st term of the Cauchy product of the

i

- X
Yp+j

in quadratic mean, where

ki
X = 1im ZIS X. . (5.23)

j">°° m=o M J-m
The Gistritutisn of X corresponds to the unique stationary
initial diz*ribution and does not depend on yo.yl.....yp_l.
The CHARI1(n) pnrocess is, therefore, asymptotically stationary

=7 ergedi: ZIrzziman (2) ).

“hs CHARI znd CHARII models are two representatives of
a gzneral class of conditionally heteroscedastic autoregres-
sions. Simulated sample paths, generated by the CHARI and
CEARII processes, have a characteristic patchy appearance.

The processes possess several attractive properties, such

T A Ry
PO, WL R G IR,
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as a linear conditional mean and an autocorrelation function
which is the same as the autocorrelation function of the
classical éutoregression. In addition, the processes can be
shov~. to be stationary and ergbdic under a reasonable and

., verifiaklile set of assumptions.

gazily

The auznosr wishes to thank R.D. Martin for helpful sug-

gestions and criticisms of earlier versions of the proofs of

Theorems 3.1 and 4.1.
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Figure Captions

Simulated sample paths of four stationary CHARI
processes. The mean and variance are the same

for all four cases.

SFaiin1) del5s epel, &n.9
CHARI(L,1) ¢=.95 ap=1, «,=.9
L2AEI(201) Q- Pp=.20 wy1.92, «,=.8

CHARI(2,2) ¢)=-.4, $y=.2; %,=1.92, o,=.4, <, =.4

Simulated sample paths of four stationary CHARII
processes. The mean and variance are the same
for all four cases.

¢=.5: By=.7, B,=.9

$=.95 B,=.3733, B,=.2

CHARII(2) (¢=-.4, $,=.2; B,=2.1333, By=2

CRERII(2)  @=-.4, $p=.2; B,=5.8666, f,=1

CHARII(1)
CHARII(1)

-7z regions of stationarity and finite fourth

momant for the CHARII(1) process. The region

(4

etwzen the two outer curves is the region of

staticnarity: (1+ﬁﬁ)®2£.1 and the region between

the inner curves is the region where the fourth

morient exists: ¢u(1+6ﬁh+3p§)l-1.
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